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ABSTRACT 

Symmetry methods employed in the ab initio polyatomic program 

HONDO are extended to the analytic computation of the energy Hessian 

matrix. A "skeleton" Hessian matrix is calculated from the unique blocks 

of electron repulsion integrals. The true Hessian matrix is generated 

by projecting the symmetric component out of the skeleton Hessian. 

The analysis is valid for many wavefunctions, including closed or open­

shell restricted and unrestricted Hartree-Fock wavefunctions, multi-

configuration Hartree-Fock wavefunctions, and configuration interaction 

wavefunctions. We also extend the use of translational invariance 

previously used for energy gradient calculations. To illustrate the 

method, we compare the computer time required for the two-electron 
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contribution to the Hessian matrix of eclipsed ethane, using Pople's 

** 6-31 G basis set and o3h symmetry and various subgroups of o3h. 

Computational times are roughly inversely proportional to the order 

of the point group. 
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INTRODUCTION 

The direct computation of the first derivative of molecular energy 

with respect to nuclear coordinates1 has proven to be a powerful tool 

for determining stationary points on multidimensional potential energy 

surfaces. 2' 3 The initial development for a single-configuration Hartree­

Fock (HF) wavefunction4' 5' 6 has gradually been extended to fully varia­

tional correlated wavefunction of the generalized valence bond type, 7' 8 

to multiconfiguration Hartree-Fock (MCHF) wavefunction, 9 and also to 

configuration interaction (CI) wavefunctions. 9,lO,ll 

Formulas for the second derivatives of the energy have been known 

for some time,12 ,13 but have not received much attention, mainly because 

of the difficulty involved with the calculation of second derivatives 

of electron repulsion integrals. Instead, vibrational force constants 

are determined by taking numerical derivatives of the analytically 

computed components of the gradient. 5,l4,15 If the molecule contains 

N nuclei, then the numerical derivative approach requires 3N+l or 6N 

gradient evaluations, depending on whether the numerical derivative 

is calculated using a one-point or two-point differencing formula. 

Each gradient calculation corresponds to an atom moved in the x,y,z 

directions by a small displacement. In addition to the N dependence 

of the force constant calculation, it is worth noting that a molecule 

with point-group symmetry loses its symmetry as soon as one atom has 

been displaced. It is no longer possible to take advantage of symmetry 

in the calculation of the energy and energy gradient through efficient 

computational methods. 6' 16 Note that for a symmetric~molecule it is 

not necessary to displace all the equivalent atoms. For example, the 
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force field for the ethane molecule can be calculated with as few as 

7 gradient evaluations, instead of 25, because of the equivalencies 

among carbon and hydrogen atoms. Such an approach has been implemented 

in the HONDO program available from the NRCc. 17 

The recently developed numerical quadrature based on the Rys 

polynomial 18 ,19 for the calculation of electron repulsion integrals 

has made it possible to compute efficiently the integrals needed for 

the first and second energy derivatives. The first efficient computa­

tion of the energy second derivatives was reported by Pople et a1. 20 

for closed-shell and unrestricted HF wavefunctions. Recently we have 

extended the formalism to MCHF and CI wavefunctions. In this approach 

the full force field of the molecule is obtained in a single calculation, 

at the equilibrium geometry for example. The force field evaluation 

no larger has an explicit dependence on the number of atoms. Further­

more for molecules with point group symmetry, it is possible to exploit 

the symmetry to reduce the computational work. 

In this paper we will describe an extension of the method previously 

used in energy and gradient calculations to take advantage of molecular 

symmetry. The method is valid for HF, MCHF, and CI wavefunctions of 

nondegenerate states. In section I we present the working formulas 

derived in Ref. 9. In section II we define the nomenclature, closely 

following the notation of Ref. 6. In section III we present the 

formalism for taking advantage of symmetry, focusing on the electron 

repulsion contribution to the second derivatives. Section IV presents 

an extension of the translational invariance property to the calculation 

of integral second derivatives. In section V we describe briefly 
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the computer code organization and present some results showing the 

reduction of computer time with molecular symmetry. 

I. ENERGY DERIVATIVES FOR CI WAVEFUNCTIONS 

In the CI method we write the n-electron wavefunction as a linear 

combination of configuration state functions (CSF). Each CSF is a 

linear combination of Slater determinants built from an orthonormal 

set of one-particle spin orbitals. In the expansion regime (LCAO), 

the spin orbitals are written as linear combinations of one-particle 

atomic basis functions. We represent the ground and excited states 

of the molecule by 

{I-1) 

the set of CSF's by 

(I-2) 

the set of spin orbitals by 

{I-3) 

and the set of atomic basis functions by 

(I -4) 

The molecular energy is the expectation value of the nonrelativistic 

electronic Hamiltonian of the molecule. The latter may be written: 

1 n 2 n 
9J=-2L:v +L: 

wl l1 w=l 
v + 

)1 

n 
"""' r-l + V 
L., )lV nuclear' (I-5) 
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where -tV~ is the kinetic energy operator of electron~' v~ is the 

potential experienced by electron~ in the field of all the nuclei, 

r~~ is the Coulomb electron repulsion operator between ~ and v, and 

Vnuclear is the nuclear repulsion operator. 

Let a be the matrix of coefficients of the ground and excited 

states of the molecule in the ~ basis: 

{I-6) 

Let 1E be the diagonal matrix of the energies, and lH the CI matrix. 

We have 

IHlt = lt 1E , {I-7) 

with 

( I-8) 

Furthermore let C denote the expansion matrix of the spin orbitals 

¢ in the atomic basis ~: 

¢ = XC . {I-9} 
~ ~~ 

th ' 
For the P molecular state, the energy gradient is given by 

{I-10) 

and the energy,second derivative by 

{I-ll) 



-7-

A 1 te rna t i ve 1 y 

where d~P is the solution of the inhomogeneous system of coupled 

equations: 

{I-12) 

(I-13) 

The total energy and the CI matrix elements can be written under the 

general form 

occ 
occ . . 1 ""' 

1-1= :E ylJ <ilhlj> + 2 L.....J 
i,j ijk~ 

(I-14) 

. . . 'k~ 
where y1J and r 1J are the one- and two-particle density elements, 

h is the usual one-electron bare nucleus operator, and 11
0CC

11 represents 

the set of occupied molecular orbitals. It follows that 

occ N 
d1H = :E I: 

i ,j ]J,V 

yij C . C . d(JJihiv) 
]Jl VJ 

1 occ N · 'k 1 
+ - :E L: r 1 J ~ C . C . C C d ( JJV I r -, 2 1 po) 

2 · · kn ]Jl VJ pk oQ, 
1 J x, ]JVpO 

(I-15) 

DCC N ri 
+ 2 L L dU . s 

i r n 

and 
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2 occ N . . 2 
d IH = L L y

1
J C . CvJ· d (llihiv) 

i ,j lJV lll 

with 

occ N 
+ 4 L L dU . dsri 

i r n 

occ N 2 + 2 L L: d uri sri 
i r 

(I-16) 

(I-17) 

(I-18) 

(I-19) 

In Eqs. (I-15) and (I-16) d~ and d 2~ are the first and second derivatives 

of the molecular orbital coefficients. They are obtained by the Coupled 

Perturbed Multi configuration Hartree-Fock theory. 9,21 ' 22 Note that for 

a fully variational wavefunction, HF or MCHF, d~ is not required for the 

gradient calculation, only for the second derivative calculation. 
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Indeed, it can be shown9 that 

occ N ri 
2 L L dU . £ 

i r n 

occ N ri 
L L £ C .C r d(JJ!v) 
i , r JJV ]Jl v 

(I-20) 

and 

occ N ri 2 L L £ C . C r d (JJ!v) 
• ]J 1 \) 
1 , r ]JV 

~ ri I + LJ £ dUsi dUsr . 
s 

(I-21) 

In Ref. 6, we have shown how point group symmetry can be used to reduce 

the computational labor in the electron repulsion contribution of 

Eq. (I-15). In what follows, we will extend the analysis to the 

electron repulsion contribution of Eq. (I-16). 
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II BASIS FUNCTIONS AND SYMMETRY TRANSFORMATIONS 

Let x be a real Cartesian basis function: 

n n n 
= ( x - Q ) x (y - Q ) Y ( z - Q ) z g ( I r- Q I ) • 

X y Z 
(II-1) 

where nx• ny' nz are non-negative integers, g is the nuclear center 

of the function, and r the argument of the function. We introduce the 

"rotational quantum number 11 

A = n + n + n 
X y Z 

( II-2) 

and refer to a function as being of type s,p,d, etc. when A equals 

0,1,2, respectively; In what follows, we may drop unimportant indices 

when it is felt that the meaning is obvious from the context. 

Let xh and xhg denote the first and second derivatives of x with 

respect to Qx• QY, and Qz when hand g each equal 1, 2, or 3 respective~ 

ly. Basis functions are grouped into shells. Functions in the same 

shell have the same Q and A, so an alternative notation is 

(I I-3) 

Let G be the point group of the molecule, and R an element of G. 

Operator R maps point~ into~·· function f(~) into f'(~) and shell 

I into I'. Shells I and I' have the same A and their centers are 

related by 

( II-4) 
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Basis function x(I3m) maps into a linear combination of functions in 

shell I' that is given by 

= 
MD) 

R x(I,m)- L x(I',m') RP-1; m',m) 
m'=l 

{II-5) 

where M(A) = (A+l)(A+2)/2 since we insist that a shell be closed under 

rotation about its own center, and thus include all combinations 

(nx,ny,nz) consistent with a given AI. In Ref. 6 we showed that the 

effect of a symmetry operation on a basis function derivative xh is 

given by 

Rxh(I,m) =L L: xh'(I',m') R(l,h',h) R(A,m',m). 
m' h' 

Similarly it is easy to show, that the effect of Ron a basis 

function second derivative xhg is given by 

(II-6) 

h hI I 
RXg(I,m)=:E L L x 9 (I',m 1 )R(l,h'.h)R(l,g',g)R(A,m 1 ,m). 

m' h' g' 

(II-7) 
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III. SECOND DERIVATIVE OF ELECTRON REPULSION ENERGY 

Experience indicates that most of the computational labor in com­

puting gradients goes into the electron repulsion contribution, the 

second term in (I-15). In general an electron repulsion integral 

(~vlri~lpo) depends on 12 nuclear coordinate parameters, and thus 12 

integral derivatives must be calculated. The translational invariance 

reduces these to only 9 contributions; however, most of the computation 

time is consumed in calculating d(~vlriJipo). For the second-derivative 

electron repulsion contribution, the second term in (I-16), an integral 

will contribute to 78 independent second derivatives. Although these 

can be reduced to 45 contributions because of translational invariance 

(see below), it is expected to dominate the calculation of (I-16). 

Indeed, Pople et a1. 20 showed that evaluation of second-derivative 

integrals requires about twice the time as that for the integral first 

derivatives. 

To simplify the analysis, 1.we consider 

(III-1) 

where we use the notation (~vi jpo) to represent the integral 

<x (1) x (l)lr-
1
1
2

1x (2) x (2)>. Let qh denote the hth coordinate of 
~ v p a a 

nucleus a. A contribution to the Hessian matrix is given by 

Ehg -- ""' p (:)2 LJ (~vii po) . aS ~vpo aqh aqg 
~vpa a S 

(I II-2) 

If ~h and ~hg denote the derivatives, x~ and x0, then 
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(III-3) 

The Kroneker deltas in (III-3) express the fact that x on nucleus a 
ll ll 

is unaffected by displacement of another center a. In shell notation, 

(III-3) becomes a sum over eight indices: I, J, K, L, m , m , m , m . 
ll \) p 0 

Let ~E~~ (IJKL) denote the partial sum in (III-2) corresponding to 

v, v, p, o running over the basis functions in shells I, J, K, and L, 

respectively. 

m ,m ,m ,m 
]J \) p 0 

[16 terms] P(IJKL, m ,m ,m ,m ) (III-4) 
ll \) p 0 
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If G4 denotes the grande list of the four labels IJKL (see Ref. 16), 

then 

~Ehg = ~ ~Ehg (IJKL) . 
aS G4 aS 

(III-5) 

For each four-label, one computes 78 blocks of integrals, with each 

block contributing to one and only one element of the Hessian matrix. 

As for the gradient, the summation over G4 in (III-5) can be 

replaced by a sum over P4, the petite list of four labels (see Ref. 16), 

which includes only the unique four labels. If I'J'K'L' and I"J"K"L" 

are equivalent under the trivial symmetries (i.e. index permutation), 

then it is clear that 

~Ehg (I'J'K'L') = ~Ehg (I"J"K"L"} , 
aS aS 

(I II-6) 

so that it suffices to compare 6E~~ (IJKL) with 6E~~ (I'J'K'L') when 

IJKL and I'K'K'L' are equivalent under the point group symmetries. The 

unitary property of a symmetry transformation leads to 

(III-7) 

and 

(I II-8) 

We substitute Eqs. {II-5). (II-6), and (II-7) into Eqs. (III-7) and 

(III-8), and into Eq. (III-3), and use the following equation: 
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L R(A1,m•,m) R(AJ,m',m) R(AK,m',m) R(AL,m',m) P(IJKL,m ,m ,m ,m) 
1111 VV PP aa 11VPO 

m m m m 11 \) p (J 

(III-9) 

valid when the electronic charge density transforms according to the 

totally symmetric representation of the point group. Equation (III-9) 

eliminates the unprimed indices, while summation over primed indices 

gives ~E~§ (I'J'K'L'). Thus we have obtained the very important result 

~E~~ (IJKL) = L ~E~~g·(I'K'K'L')R(l,h',h) R(l,g',g).(I.II-10) 
1-> h'g' 1-> 

Equation (III-10) allows us to eliminate most of the terms·. in the 

summation of Eq. (III-5). Let q4 (IJKL) be the number of four labels 

equivalent to IJKL under the direct product of trivial symmetries and 

point group symmetries. We change the order of summations in Eqs. 

(III-5) and (III-10) and define the "skeleton Hessian matrix" as: 

(III-11) 

From this, the true Hessian matrix is obtained by a final ."symmetriza-

tion": 

h 1 *h' g' E g = ng- L L L Ea'Q' R(l,h',h) R(l,g',g) , 
aS R h' g' ~-> 

(III-12) 
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where ng is the order of the symmetry point group. In other words, the 

true Hessian matrix is obtained by projecting the completely symmetric 

component out of the skeleton Hessian matrix. 
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IV. TRANSLATIONAL INVARIANCE 

In the preceding section we have shown how to replace the summation 

over the grande list G4 in Eq. (III-5) with a summation over the petite 

list P4. According to Eq. (III-4). each term in Eq. (III-11) is 

itself a sum of 16 Mblock contributions, where Mblock ~ M(A1) M(AJ) 

M(AK) M(AL). We identify the 16 terms by two indices, t and u, running 

from one to four separately. In this section we discuss an additional 

relationship which allows us to eliminate certain (t,u} values. 

For a given IJKL four label, we define sixteen 3x3 matrices 

L1E(t,u) (t=l,4; u=l,4). The values t=1, ... 4 refer to centers 

a1 ... aL respectively. For example 

L1E(2,3) =L L P(IJKL,m ,m ,m ,m) <x(I.m )xh(J,m\))llxg(K,m )x(L,in )> 
hg m m m m· J1 v P a J1 > P a 

JlVpa 
(I V-1) 

As pointed out by Komornicki et al. 4, the translational invariance of 

an individual integral implies 

Further differentiation of Eq. (IV-2) with respect to an arbitrary 

nuclear coordinate q of the integral gives 

which leads to 

(IV-2) 

(IV·-3) 
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4 
L: 6E(t,u) = 0 . (IV-4) 
u=l 

Anyone of the centers associated with a given IJKL can be eliminated 

using Eq. (IV-4). Thus only 45 second-derivative integrals out of 78 

unique ones need be calculated for a given IJKL Block. Redundancies 

among the 4 centers lead to an even greater savings. 
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V. RESULTS 

We have implemented these ideas into a new version of HONDO that 

computes the energy second derivatives for an HF, MCHF or CI wavefunction. 

A. Program Organization 

After calculation of the molecular wavefunction, the gradient 

vector and Hessian matrix are computed. The two-electron portion of the 

Hessian program executes an outer loop over the petite list of four 

labels. For each unique IJKL the appropriate block of P~vpcr is cal­

culated (for an HF wavefunction) or read in (for a MCHF or CI wave­

function) prior to looping over (t,u) labels. For each unique ~E(t,u) 

the program generates three or four intermediate blocks of integrals 

over shells of contracted Cartesian gaussian functions, and then 

performs an inner sum over the four m indices. For example, for a DODD 

block (A=2 for all 4 labels) the program calculates a SDDD, DODD, and 

GOOD block for ~E(l,l), and a PPDD, PFDD, FPDD, and FF'oD block for 

~E(l,2), etc. The ~E{t,u) vector is then obtained by summing over m., 

after combining the integrals from the 3 or 4 blocks to produce the 

second derivative integrals and multiplying by P . After looping 
~vpcr 

over {t,u), the ~E{t,u) matrices are added into the appropriate elements 

of the skeleton Hessian matrix. After looping over P4 labels, the 

symmetrization is performed. 

B. Computation Times for Ethane 

Computations have been carried out for the C2H6 ,molecule in the 

eclipsed configuration with bond lengths C-C = 1.54068 A, GH = 1.08622 A, 

and angl~s HCH = 107.05° and CCH = 111.76°, using Pople's 6-31G basis 
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augmented with a set of d functions on C (ad = 0.8) and a set of p 

functions on H (ap = 0.75). The energy gradient and Hessian matrix 

were computed using the full o3h symmetry, and the entire calculation 

repeated using seven different subgroups. The same test calculations 

were used in Ref. (6). Ratios of computational times are reported in 

Table I. The effect of using point group symmetry is immediately evident. 

The results are similar to the one reported for the 2 electron gradient 

calculation. Not so surprisingly, computation times are roughly inverse­

ly proportional to the order of the group. 

In conclusion, it is worthwhile comparing the present method of 

analytical evaluation of the Hessian matrix with the widely used numeri­

cal difference method. As shown in Table I, if we take as a unit the 

time required for the evaluation of the gradient using o3h symmetry, 

then the direct evaluation of the Hessian will cost 2.4. With the 

finite difference method, at least 6 gradient evaluations would have 

to be carried out using c1 symmetry, in addition to the initial gradient, 

for a total of 49 units. The direct hessian evaluation is therefore 

far superior to the finite difference method. The advantage will be 

even greater with MCHF and CI wavefunctions. 
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** Table l. Ratio of computation times for eclipsed ethane using 6-31G 
basis. 

Point 2-electron 2-electron He~ 
Run Group Order Gradient Hessian gradient 

1 03h 12 1 2.4 

2 c3v 6 1.9 2.0 2.5 

3 c2v 4 2.4 2.3 2.3 

4 c3 3 2.8 2.8 2.4 

5 c2 2 4.0 4.0 2.4 

6 Cs(ah) 2 4.0 4.0 2.4 

7 Cs(av) 2 4.6 4.9 2.6 

8 cl 1 7.9 7.8 2.4 
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